

# Assessment of Acoustic Impact for the Proposed Varley Solar Farm

Author: Andrew Birchby

Date: 10 October 2022

Ref: 04886-4726443



# **Revision History**

| Issue | Date        | Author         | Nature & Location of Change |
|-------|-------------|----------------|-----------------------------|
| 01    | 10 Oct 2022 | Andrew Birchby | First created               |

# CONTENTS

| 1.0   |                                              | 1  |
|-------|----------------------------------------------|----|
| 2.0   | PLANNING GUIDANCE                            | 1  |
| 2.1   | National Planning Policy Framework           | 1  |
| 2.2   | Noise Policy Statement for England           | 1  |
| 2.3   | National Planning Practice Guidance          | 1  |
| 2.4   | National Policy Statements                   | 2  |
| 3.0   | METHODOLOGY                                  | 3  |
| 3.1   | Overview                                     | 3  |
| 3.2   | Baseline Conditions                          | 3  |
| 3.3   | Propagation                                  | 4  |
| 3.4   | Assessment                                   | 4  |
| 4.0   | BASELINE DATA                                | 4  |
| 5.0   | ASSESSMENT                                   | 5  |
| 6.0   | CONCLUSIONS                                  | 8  |
| APPEN | DIX A - EXPERIENCE AND QUALIFICATIONS        | 8  |
| APPEN | DIX B - BASELINE NOISE ASSESSMENT REPORT     | 9  |
| APPEN | DIX C - FIGURES                              | 10 |
| APPEN | DIX D - SUGGESTED PLANNING CONDITION WORDING | 12 |



### 1.0 INTRODUCTION & SCOPE

This report contains an assessment of the acoustic impact of the proposed Varley Solar Farm. Two Members of the Institute of Acoustics have been involved in its production. Details of their experience and qualifications can be found in Appendix A.

The scope includes determining the baseline and predicting sound levels due to the proposed development in order to assess the level of impact in accordance with relevant planning guidance.

### 2.0 PLANNING GUIDANCE

### 2.1 National Planning Policy Framework

Within England, the treatment of noise is defined in the planning context by the National Planning Policy Framework (NPPF)<sup>1</sup> which details the Government's planning policies and how these are expected to be applied. The NPPF provides advice on the role of the planning system in helping to prevent and limit the adverse effects of noise, stating that planning policies and decisions should aim to avoid noise giving rise to significant adverse impacts, whilst at the same time mitigating and reducing to a minimum other adverse impacts on health and quality of life. At this point the NPPF refers to the Noise Policy Statement for England (NPSE)<sup>2</sup> which provides guidance on the categorisation of impact levels.

### 2.2 Noise Policy Statement for England

The Noise Policy Statement for England (NPSE) sets out the long-term vision of Government noise policy: to promote good health and quality of life through effective noise management within the context of sustainable development. In order to weigh noise impacts against the economic and social benefits of the activity under consideration, NPSE defines three categories of effect level:

- No Observed Effect Level (NOEL): noise levels below this have no detectable effect on health and quality of life;
- Lowest Observed Adverse Effect Level (LOAEL): the level above which adverse effects on health and quality of life can be detected; and
- Significant Observed Adverse Effect Level (SOAEL): the level above which effects on health and quality of life become significant.

### 2.3 National Planning Practice Guidance

National Planning Practice Guidance (NPPG)<sup>3</sup> puts the effect levels defined by NPSE into greater context by explaining how such noise levels might be perceived, providing examples of outcomes based on likely average response, and advising on appropriate actions. These are reproduced in Table 1 below.

<sup>&</sup>lt;sup>1</sup> "National Planning Policy Framework", Department for Communities and Local Government, March 2012

<sup>&</sup>lt;sup>2</sup> "Noise Policy Statement for England (NPSE)", Department for Environment, Food and Rural Affairs, March 2010

<sup>&</sup>lt;sup>3</sup> "National Planning Practice Guidance", Department for Communities and Local Government, March 2014



| Perception                     | Examples of Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Increasing Effect Level                | Action                                 |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|
| Not noticeable                 | No Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No Observed Effect                     | No specific<br>measures required       |
|                                | No Observed Effect L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | evel (NOEL)                            | · · · ·                                |
| Noticeable and not intrusive   | Noise can be heard, but does not<br>cause any change in behaviour or<br>attitude. Can slightly affect the<br>acoustic character of the area but<br>not such that there is a perceived<br>change in the quality of life.                                                                                                                                                                                                                                                                                  | No Observed Adverse<br>Effect          | No specific<br>measures required       |
|                                | Lowest Observed Adverse Ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ffect Level (LOAEL)                    |                                        |
| Noticeable and<br>intrusive    | Noise can be heard and causes small<br>changes in behaviour and/or<br>attitude, e.g. turning up volume of<br>television; speaking more loudly;<br>where there is no alternative<br>ventilation, having to close windows<br>for some of the time because of the<br>noise. Potential for some reported<br>sleep disturbance. Affects the<br>acoustic character of the area such<br>that there is a perceived change in<br>the quality of life.                                                             | Observed Adverse Effect                | Mitigate and<br>reduce to a<br>minimum |
|                                | Significant Observed Adverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effect Level (SOAEL)                   |                                        |
| Noticeable and<br>disruptive   | The noise causes a material change<br>in behaviour and/or attitude, e.g.<br>avoiding certain activities during<br>periods of intrusion; where there is<br>no alternative ventilation, having to<br>keep windows closed most of the<br>time because of the noise. Potential<br>for sleep disturbance resulting in<br>difficulty in getting to sleep,<br>premature awakening and difficulty<br>in getting back to sleep. Quality of<br>life diminished due to change in<br>acoustic character of the area. | Significant Observed<br>Adverse Effect | Avoid                                  |
| Noticeable and very disruptive | Extensive and regular changes in<br>behaviour and/or an inability to<br>mitigate effect of noise leading to<br>psychological stress or physiological<br>effects, e.g. regular sleep<br>deprivation/awakening; loss of<br>appetite, significant, medically<br>definable harm, e.g. auditory and<br>non-auditory                                                                                                                                                                                           | Unacceptable Adverse<br>Effect         | Prevent                                |

### Table 1 - Noise Exposure Hierarchy

### 2.4 National Policy Statements

In addition to the aforementioned guidance which is applicable to all forms of environmental noise, specific guidance relating to nationally significant energy infrastructure has been published by the Department of Energy and Climate Change (DECC). Whilst the proposed development is not of a scale that would be deemed nationally significant, the relevant National Policy Statements are informative in that they suggest an assessment methodology that would be considered appropriate for the type of development being proposed.

The Overarching National Policy Statement for Energy (EN-1)<sup>4</sup> outlines the need for new electricity capacity from renewable sources as the country transitions to a low carbon electricity

<sup>&</sup>lt;sup>4</sup> "Overarching National Policy Statement for Energy (EN-1)", Department of Energy and Climate Change, July 2011



system. However, referring back to the NPSE, EN-1 recognises the potential for energy infrastructure to impact on health and quality of life if it results in excessive noise. It goes on to say that where noise impacts are likely to arise, they should be assessed according to the principles of the relevant British Standards.

Of the examples provided, BS 4142<sup>5</sup> and BS 8233<sup>6</sup> relate to operational sound. BS 4142 describes methods for rating and assessing sound of an industrial or commercial nature. Outdoor sound levels are used to assess the likely effects on people who might be inside or outside a residential property. BS 8233 provides guidance on the control of noise for new buildings or those undergoing refurbishment. It does not provide guidance on assessing the effect of changes in external noise levels on occupants of existing buildings.

The National Policy Statement for Electricity Networks Infrastructure (EN-5)<sup>7</sup>, relevant to the transmission and distribution parts of the electricity network along with any associated infrastructure, such as substations and converter stations, again points to the appropriateness of BS 4142 in assessing the acoustic impact of such projects. The inverters and transformers deployed as part of the proposed project are examples of infrastructure of this kind.

### 3.0 METHODOLOGY

#### 3.1 Overview

An assessment in accordance with BS 4142: 2014 has been undertaken in order to determine the acoustic impact of the proposed development. This approach is consistent with the guidance provided in the National Policy Statements published by DECC for this type of development. BS 4142 lends itself well to an assessment in accordance with NPPF, NPSE and NPPG as it allows the level of impact to be ascertained. The assessment methodology has been agreed with the Environmental Health Department of South Gloucestershire Council.

### 3.2 Baseline Conditions

In order to complete a BS 4142 assessment of the proposal, the background sound level at the times when the new sound source is intended to be operational should be measured. The background sound level is defined as the A-weighted sound pressure level that is exceeded for 90 % of the measurement time interval, or  $L_{A90, T}$ .

Measurements should be made at a location that is representative of the assessment locations, the time interval should be sufficient to obtain a representative value, and the duration should be long enough to reflect the range of background sound levels over the period of interest.

Precautions should be taken to minimise the influence on the results from sources of interference. Weather conditions that may affect the measurements should be recorded and an effective wind shield used to minimise turbulence at the microphone.

A statistical analysis, following the example given by BS 4142, should be used to determine an appropriate background sound level for the analysis from the range of results obtained.

<sup>&</sup>lt;sup>5</sup> "Methods for rating and assessing industrial and commercial sound", BS 4142: 2014+A1: 2019, The British Standards Institution 2014 (Amended 2019)

<sup>&</sup>lt;sup>6</sup> "Guidance on sound insulation and noise reduction for buildings", BS 8233: 2014, The British Standards Institution 2014

<sup>&</sup>lt;sup>7</sup> "National Policy Statement for Electricity Networks Infrastructure (EN-5)", Department of Energy and Climate Change, July 2011



### 3.3 Propagation

The ISO 9613-2<sup>8</sup> propagation model shall be used to predict the specific sound levels due to the proposed development at nearby residential properties. The propagation model takes account of sound attenuation due to geometric spreading and atmospheric absorption. The assumed temperature and relative humidity are 10  $^{\circ}$ C and 70  $^{\circ}$  respectively.

Ground effects are also taken into account by the propagation model, with a ground factor of 0.5 adopted to reflect a mix of hard and porous ground between the site and the assessment locations. A 4 m receiver height shall be used. The effect of surface features such as buildings and trees shall not be included in the model although the effect of the solar panels is considered. There is a level of conservatism built into the model as a result of the adoption of these settings.

ISO 9613-2 is a downwind propagation model. Where conditions less favourable to sound propagation occur, such as when the assessment locations are crosswind or upwind of the proposed development, the sound levels would be expected to be less and the downwind predictions presented here would be regarded as conservative.

### 3.4 Assessment

Once the specific sound levels due to the proposed new sound source have been predicted the rating sound level can be calculated, it is this which is compared to the existing background sound level to determine the level of impact. The rating level is obtained by adding any penalties due to character that may be applicable to the predicted specific sound level.

Table 2 details how the difference between the rating sound level and background sound level is used to come to a judgement about the level of impact under BS 4142, although is noted that any assessment is context specific. These criteria relate well with the categories defined by NPSE: with the background sound level representing the NOEL, 5 dB above background representing the LOAEL and 10 dB above background the SOAEL.

| Rating Level           | BS 4142 Assessment                   |  |  |
|------------------------|--------------------------------------|--|--|
| Below background       | Indicates low impact                 |  |  |
| 5 dB above background  | Indicates adverse impact             |  |  |
| 10 dB above background | Indicates significant adverse impact |  |  |

| Table 2 - BS 4142 Assessment | Criteria |
|------------------------------|----------|
|------------------------------|----------|

Depending upon the diurnal variation in the background sound level, and the times when the proposed new sound source is scheduled to operate, it may be appropriate to undertake separate assessments for certain times of day e.g. day, evening and night.

### 4.0 BASELINE DATA

Baseline noise levels were determined in a survey undertaken by Hayes McKenzie Partnership Ltd between Tuesday 13<sup>th</sup> September and Tuesday 27<sup>th</sup> September 2022. Full details of the survey including the methodology, results, equipment used, photos and charts are provided in Hayes McKenzie's report (Appendix B)<sup>9</sup>.

The measured background sound levels during day, evening and night-time periods are shown in Table 3. The two survey positions, H2 (Varley Farm) and H5 (Heathend Farm), are shown in red on the map in Figures 1 and 2 (Appendix C). Based on proximity the data recorded at survey

<sup>&</sup>lt;sup>8</sup> "Acoustics - Attenuation of Sound During Propagation Outdoors, Part 2: General Method of Calculation", International Organisation for Standardisation 1996

<sup>&</sup>lt;sup>9</sup> Varley Farm Solar, Background Noise Survey. Report HM: 3630\_R01\_EXT2. Hayes McKenzie, 19 October 2022



location H2 is assumed to be representative of houses H1-H3 and H10-H12. Data from survey location H5 is assumed to represent houses H4-H9.

| House ID | X, m   | Y, m   | Day Background,<br>dB L <sub>A90</sub> | Evening Background,<br>dB L <sub>A90</sub> | Night Background,<br>dB LA90 |
|----------|--------|--------|----------------------------------------|--------------------------------------------|------------------------------|
| H1       | 370201 | 190418 | 36                                     | 34                                         | 32                           |
| H2       | 370061 | 190538 | 36                                     | 34                                         | 32                           |
| H3       | 369682 | 190340 | 36                                     | 34                                         | 32                           |
| H4       | 369784 | 189974 | 37                                     | 33                                         | 30                           |
| H5       | 369936 | 189813 | 37                                     | 33                                         | 30                           |
| H6       | 369731 | 189362 | 37                                     | 33                                         | 30                           |
| H7       | 369810 | 189124 | 37                                     | 33                                         | 30                           |
| H8       | 370457 | 188745 | 37                                     | 33                                         | 30                           |
| H9       | 371682 | 188635 | 37                                     | 33                                         | 30                           |
| H10      | 372123 | 190406 | 36                                     | 34                                         | 32                           |
| H11      | 371914 | 190962 | 36                                     | 34                                         | 32                           |
| H12      | 370885 | 191119 | 36                                     | 34                                         | 32                           |

Table 3 - Baseline Data

### 5.0 ASSESSMENT

The main sources of sound within the proposed development are the 10 inverters and transformers located at the solar inverter substations along with the grid transformer at the grid substation. The inverters are only assumed to be operating during daytime and evening periods when the solar farm could be generating power. This assumption is conservative in the winter months when there will be no generation in the evenings. The transformers are assumed to be operating at all times.

Acoustic emission data for the proposed equipment is detailed in Table 4. The data corresponds to the maximum acoustic emission for each device as advised by the manufacturer. Predictions based on this data therefore represent the worst case and the noise levels would be expected to be less when the site isn't operating at maximum capacity.

| Equipment                                    | Sound Pressure Level at 1m, dB LAeq |
|----------------------------------------------|-------------------------------------|
| Solar substation (inverter plus transformer) | 79                                  |
| Solar transformer alone                      | 71                                  |
| Grid transformer                             | 82                                  |

Table 4 - Acoustic Emission Data

The sound emitted by the inverter cooling fans and transformers can have distinctive character. Under the subjective method described in BS 4142, a correction of 2 dB has been applied in the event that tones are just perceptible at the assessment locations.

Predicted specific sound levels and the resulting rating level at nearby properties are detailed in Tables 5-7 for daytime, evening and night-time periods. The rating level is then compared to the background sound levels of Table 3 to assess the impact at each location. An illustrative sound footprint for the proposed development showing the predicted specific sound level during daytime periods is provided in Figure 1 (Appendix C). An illustrative sound footprint for nighttime periods is shown in Figure 2.



| House ID | Specific Level, dB LAeq | Rating Level, dB L <sub>Aeq</sub> | Rating vs Background, dB | Potential Impact |
|----------|-------------------------|-----------------------------------|--------------------------|------------------|
| H1       | 32                      | 34                                | -2                       | Low              |
| H2       | 25                      | 27                                | -9                       | Low              |
| H3       | 22                      | 24                                | -12                      | Low              |
| H4       | 26                      | 28                                | -9                       | Low              |
| H5       | 28                      | 30                                | -7                       | Low              |
| H6       | 21                      | 23                                | -14                      | Low              |
| H7       | 18                      | 20                                | -17                      | Low              |
| H8       | 16                      | 18                                | -19                      | Low              |
| H9       | 12                      | 14                                | -23                      | Low              |
| H10      | 12                      | 14                                | -22                      | Low              |
| H11      | 12                      | 14                                | -22                      | Low              |
| H12      | 16                      | 18                                | -18                      | Low              |

### Table 5 - BS 4142 Assessment Results - Day

Table 6 - BS 4142 Assessment Results - Evening

| House ID | Specific Level, dB LAeq | Rating Level, dB LAeq | Rating vs Background, dB | Potential Impact |
|----------|-------------------------|-----------------------|--------------------------|------------------|
| H1       | 32                      | 34                    | 0                        | Low              |
| H2       | 25                      | 27                    | -7                       | Low              |
| H3       | 22                      | 24                    | -10                      | Low              |
| H4       | 26                      | 28                    | -5                       | Low              |
| H5       | 28                      | 30                    | -3                       | Low              |
| H6       | 21                      | 23                    | -10                      | Low              |
| H7       | 18                      | 20                    | -13                      | Low              |
| H8       | 16                      | 18                    | -15                      | Low              |
| H9       | 12                      | 14                    | -19                      | Low              |
| H10      | 12                      | 14                    | -20                      | Low              |
| H11      | 12                      | 14                    | -20                      | Low              |
| H12      | 16                      | 18                    | -16                      | Low              |

### Table 7 - BS 4142 Assessment Results - Night

| House ID | Specific Level, dB LAeq | Rating Level, dB LAeq | Rating vs Background, dB | Potential Impact |
|----------|-------------------------|-----------------------|--------------------------|------------------|
| H1       | 26                      | 28                    | -4                       | Low              |
| H2       | 21                      | 23                    | -9                       | Low              |
| H3       | 18                      | 20                    | -12                      | Low              |
| H4       | 21                      | 23                    | -7                       | Low              |
| H5       | 22                      | 24                    | -6                       | Low              |
| H6       | 16                      | 18                    | -12                      | Low              |
| H7       | 13                      | 15                    | -15                      | Low              |
| H8       | 12                      | 14                    | -16                      | Low              |
| H9       | 8                       | 10                    | -20                      | Low              |
| H10      | 9                       | 11                    | -21                      | Low              |
| H11      | 9                       | 11                    | -21                      | Low              |
| H12      | 14                      | 16                    | -16                      | Low              |

The impact of the proposed development is low where the rating sound level does not exceed the existing background sound level. This is the case at all properties during daytime, evening and night-time periods. No observed effect on health or quality of life would be expected where the impact is low.

A comparison of the predicted ambient sound level with the proposed development in operation to the measured residual sound level is shown in Tables 8-10 for daytime, evening and night-time periods. No change in the ambient sound level during day or night-time periods is predicted due to the operation of the proposed development. The proposed development is predicted to result in a 1 dB change in the ambient sound level during the evenings although this would be



restricted to the times of year when the site is generating during this period i.e. summer. These findings are consistent with the site having a low impact (3 dB representing the smallest perceptible change in the level of a given sound and 10 dB a doubling in loudness).

| House ID | Day Residual,<br>dB L <sub>Aeq</sub> | Day Ambient,<br>dB L <sub>Aeq</sub> | Day Change,<br>dB L <sub>Aeq</sub> |
|----------|--------------------------------------|-------------------------------------|------------------------------------|
| H1       | 42                                   | 42                                  | 0                                  |
| H2       | 42                                   | 42                                  | 0                                  |
| H3       | 42                                   | 42                                  | 0                                  |
| H4       | 43                                   | 43                                  | 0                                  |
| H5       | 43                                   | 43                                  | 0                                  |
| H6       | 43                                   | 43                                  | 0                                  |
| H7       | 43                                   | 43                                  | 0                                  |
| H8       | 43                                   | 43                                  | 0                                  |
| H9       | 43                                   | 43                                  | 0                                  |
| H10      | 42                                   | 42                                  | 0                                  |
| H11      | 42                                   | 42                                  | 0                                  |
| H12      | 42                                   | 42                                  | 0                                  |

Table 8 - Predicted Change in Ambient Sound Level - Day

| House ID | Evening Residual,<br>dB L <sub>Aeq</sub> | Evening Ambient,<br>dB L <sub>Aeq</sub> | Evening<br>Change, dB L <sub>Aeq</sub> |
|----------|------------------------------------------|-----------------------------------------|----------------------------------------|
| H1       | 38                                       | 39                                      | 1                                      |
| H2       | 38                                       | 38                                      | 0                                      |
| H3       | 38                                       | 38                                      | 0                                      |
| H4       | 38                                       | 38                                      | 0                                      |
| H5       | 38                                       | 38                                      | 0                                      |
| H6       | 38                                       | 38                                      | 0                                      |
| H7       | 38                                       | 38                                      | 0                                      |
| H8       | 38                                       | 38                                      | 0                                      |
| H9       | 38                                       | 38                                      | 0                                      |
| H10      | 38                                       | 38                                      | 0                                      |
| H11      | 38                                       | 38                                      | 0                                      |
| H12      | 38                                       | 38                                      | 0                                      |

Table 10 - Predicted Change in Ambient Sound Level - Night

| House ID | Night Residual,<br>dB L <sub>Aeq</sub> | Night Ambient,<br>dB L <sub>Aeq</sub> | Night Change,<br>dB L <sub>Aeq</sub> |
|----------|----------------------------------------|---------------------------------------|--------------------------------------|
| H1       | 37                                     | 37                                    | 0                                    |
| H2       | 37                                     | 37                                    | 0                                    |
| H3       | 37                                     | 37                                    | 0                                    |
| H4       | 38                                     | 38                                    | 0                                    |
| H5       | 38                                     | 38                                    | 0                                    |
| H6       | 38                                     | 38                                    | 0                                    |
| H7       | 38                                     | 38                                    | 0                                    |
| H8       | 38                                     | 38                                    | 0                                    |
| H9       | 38                                     | 38                                    | 0                                    |
| H10      | 37                                     | 37                                    | 0                                    |
| H11      | 37                                     | 37                                    | 0                                    |
| H12      | 37                                     | 37                                    | 0                                    |

A level of conservatism has been built into the assessment to compensate for the potential impact of uncertainty. The predicted specific sound levels presented in this assessment, and the sound footprints shown in Figures 1 and 2, reflect this. The amenity of nearby residents can



be protected by the imposition of a planning condition relating to sound. A suggested appropriate form of wording for such a condition is provided in Appendix D.

### 6.0 CONCLUSIONS

An assessment of the acoustic impact of the proposed Varley Solar Farm has been undertaken in accordance with BS 4142: 2014. The proposed development is predicted to have a low impact such that no observed effect on health or quality of life would be expected.

### **APPENDIX A - EXPERIENCE AND QUALIFICATIONS**

Author:

| Name           | Andrew Birchby                                               |  |  |  |  |
|----------------|--------------------------------------------------------------|--|--|--|--|
|                | Acoustic Specialist, Renewable Energy Systems, 2017-Present  |  |  |  |  |
| Exportionco    | Senior Acoustic Analyst, Renewable Energy Systems, 2014-2016 |  |  |  |  |
| Experience     | Acoustic Analyst, Renewable Energy Systems, 2012-2014        |  |  |  |  |
|                | Technical Analyst, Renewable Energy Systems, 2006-2012       |  |  |  |  |
|                | MIOA, Member of the Institute of Acoustics                   |  |  |  |  |
| Qualifications | MSc Environmental Governance, Manchester University          |  |  |  |  |
|                | IOA Postgraduate Diploma in Acoustics and Noise Control      |  |  |  |  |
|                | MEng Systems Engineering, Loughborough University            |  |  |  |  |

### Checker/Approver:

| Name           | Dr Jeremy Bass                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Experience     | Head of Specialist Services/Senior Technical Manager,<br>Renewable Energy Systems, 2000-Present<br>Technical Analyst/Senior Technical Analyst, Renewable Energy<br>Systems, 1990-2000                                                                                                                                                |  |  |  |  |
|                | Foreign Exchange Researcher, Mechanical Engineering<br>Laboratory, Tsukuba, Japan, 1989-1990<br>Research Associate, Energy Research Unit, Rutherford Appleton<br>Laboratory, 1986-1989                                                                                                                                               |  |  |  |  |
| Qualifications | MIOA, Member of the Institute of Acoustics<br>MInstP, Member of the Institute of Physics<br>PhD, The Potential of Combined Heat & Power, Wind Power &<br>Load Management for Cost Reduction in Small Electricity Supply<br>Systems, Department of Applied Physics, University of<br>Strathclyde<br>BSc Physics, University of Durham |  |  |  |  |



**APPENDIX B - BASELINE NOISE ASSESSMENT REPORT** 

# Hayes McKenzie —— Consultants in Acoustics

Varley Farm Solar Background Noise Survey Report HM: 3630\_R01\_EXT2 19 October 2022

hayesmckenzie.co.uk

Varley Farm Solar Background Noise Survey Report HM: 3630\_R01\_EXT2 19 October 2022

| Prepared for:       | Renewable Energy Systems Ltd                     |
|---------------------|--------------------------------------------------|
| Report prepared by: | Ed Guy, BSc, AMIOA<br>Junior Acoustic Consultant |
| Checked by:         | Andy McKenzie PhD, BSc, FIOA<br>Director         |
| Approved by:        | Andy McKenzie PhD, BSc, FIOA<br>Director         |

Hayes McKenzie Partnership Ltd (HMPL) has prepared this report for the sole use of the client. The report may not be relied upon by any other party, without prior and express agreement of HMPL. Where findings are based on information provided by third parties, this information has not been independently verified by HMPL, unless otherwise stated.

Unit 3, Oakridge Office Park, Whaddon, Salisbury SP5 3HT, UK salisbury@hayesmckenzie.co.uk (+44) 01722 710091

# 1. INTRODUCTION

- 1.1 Hayes McKenzie Partnership Ltd have been commissioned by Renewable Energy Systems Ltd to undertake background noise measurements in connection with a proposed solar farm, located between Cromhall and Wickwar to the north-east of Bristol.
- 1.2 This report presents the results of these measurements.

# 2. RELEVANT GUIDANCE

# BS 4142, Method for Rating & Assessing Industrial & Commercial Sound

- 2.1 BS 4142:2014, *Method for rating and assessing industrial and commercial sound*, provides an assessment methodology for determining the likely impact of noise experienced by people at neighbouring residential properties from industrial and commercial sources. The standard describes a method for rating noise levels based on the difference between the level of existing background noise (in the absence of the industrial or commercial source) and the noise immission level of the source at a particular receiver location (known as the specific noise level). In instances where the specific noise level exhibits an identifiable or perceived character (such as tonality, impulsiveness, or other identifiable character) then a penalty is added to the same noise level to give the 'rating level'. The maximum penalty for tonal content is +6 dB. The difference between the background noise level and the rating level is then used to determine the potential impact.
- 2.2 The background noise is expressed in terms of the L<sub>A90</sub> noise level which is the level exceeded for 90% of the time interval over which measurements are taken. It is stated in BS4142 that a series of measurements are undertaken in intervals of normally not less than 15 minutes which are subsequently used to derive a 'representative' value for assessment purposes.

# 3. BACKROUND NOISE SURVEY

- 3.1 The measurements were carried out to determine the background noise levels at two locations representative of the nearest properties to the proposed development which lie to the north and west in Talbot's End and Heath End respectively as shown on Figure 1.
- 3.2 Continuous unattended measurements were conducted at Varley Farm and Heathend Farm between Tuesday the 13<sup>th</sup> of September 2022 and Tuesday the 27<sup>th</sup> of September 2022 at these locations.



Figure 1 - Map Showing Approx. Centre of Site Location (Red Circle) with Measurement Locations Circled - Varley Farm in Yellow and Heathend Farm in Blue

- 3.3 A Rion NL52 Sound Level Meter (SLM) was installed at each of the two monitoring locations.
  Each meter was fitted with a 1/2" microphone complying with the Class 1 standard in IEC 616721. In each case, the microphone was fitted with a 45 mm radius foam ball windshield surrounded by a 125 mm radius secondary windshield of 40 mm thickness and mounted on a tripod at a height of 1.4 m.
- 3.4 The SLM was programmed to measure a number of statistical noise indices, including the L<sub>A90</sub> and the L<sub>Aeq</sub> over consecutive 15-minute intervals as specified in BS4142 as the minimum duration measurement interval.
- 3.5 Calibration was carried out using a B&K Type 4231 Acoustic Calibrator (s/n 3025352) set at a level of 94.00 dB at the start of the survey and checked at the end, with a drift of no more than 0.1 dB being observed, which is within normal tolerances. All equipment was within its relevant calibration period.
- 3.6 During the noise survey, a weather station<sup>1</sup> was installed at each monitoring location. This was mounted on a survey tripod positioning the anemometer and wind vane at an approximate height of 1.5 m above the ground. The weather station was connected to a data logger recording average wind speed and direction, and rainfall in 15-minute intervals synchronised with the noise measurements.

# Varley Farm

- 3.7 The microphone was installed at the back of the property approximately 2.5m from a garden wall to the North, and more than 3m from outbuildings to the east and west. The weather station was positioned slightly to the west of the microphone.
- 3.8 Ambient noise noted during the installation and collection of the equipment included cows, birds, distant traffic noise, a milk container lorry being loaded/unloaded as well as other farm work activities.

<sup>&</sup>lt;sup>1</sup> Vantage Vue Weather Station Davis Instruments: www.davisinstruments.com/products/vantage-vue-wirelessweather-station



Figure 2 – Varley Farm Equipment Looking North



Figure 3 – Varley Farm Equipment Looking North-West

# Heathend Farm

- 3.9 The microphone was installed to the North of the property in a small paddock, with a fence and hedge combination to the North and open fences to the East and South. The weather station was installed to the West of the microphone.
- 3.10 Ambient noise noted during the installation and collection of the equipment included distant road and farm work noise, as well as bees and birds. Roof works were being undertaken on a nearby building during the installation. A quarry blasting alarm was noted during the installation at this property, which would presumably be audible at Varley Farm as well.



Figure 4 – Heathend Farm Equipment Looking East



Figure 5 – Heathend Farm Microphone Looking South

# Results

- 3.11 BS4142 splits the 24-hour period into daytime (0700-2300) and night-time (2300-0700). In this report the results for the daytime have also been presented split into daytime (0700-1900) and evening (1900-2300), as the solar farm will not necessarily be running during the evening hours year-round. The 16-hour BS4142 daytime period (0700-2300) will be referred to as the "full day period".
- 3.12 This section presents the results of the measurements including average L<sub>A90</sub> values over each of these periods or each day, as well as 16 hour, 8 hour, 12 hour and 4 hour L<sub>Aeq</sub> values respectively, essentially the energy average noise levels, which are included for information only.

# Varley Farm

- 3.13 The results of the measurements have been plotted as time history charts covering the entire 14day survey period and are shown in Figure 6 and Figure 7. Periods of rainfall have been excluded from both the charts, the averages and the overall L<sub>Aeq</sub> values, as this can artificially raise the background noise level.
- 3.14 Wind speeds exceeding around 5 m/s can affect sound levels due to the wind generating sound across the microphone or increasing the impact of wind noise in trees or similar. No (15-minute averaged) wind speeds exceeding 5 m/s were noted during the survey meaning no data had to be excluded due to high wind speeds.



Figure 6 – Varley Farm Time History Week 1



# Figure 7 – Varley Farm Time History Week 2

3.15 Table 1 shows the full day, daytime, evening and night-time L<sub>Aeq</sub> and average L<sub>A90</sub> for all the days over the survey period.

| Period (24hrs<br>from 0700 to<br>0700)                  | Full Day<br>(0700-<br>2300)<br>Average<br>noise<br>level<br>dB LAeq | Full Day<br>(0700-<br>2300)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) | Daytime<br>(0700-<br>1900)<br>Average<br>noise<br>level<br>dB LAeq | Daytime<br>(0700-<br>1900)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) | Evening<br>(1900-<br>2300)<br>Average<br>noise<br>level<br>dB LAeq 4 | Evening<br>(1900-<br>2300)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) | Night<br>(2300-<br>0700)<br>Average<br>noise<br>level<br>dB LAeq | Night<br>(2300-<br>0700)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) |
|---------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Tuo 12th                                                | 16 hour                                                             | (Avg.)                                                                                    | 12 hour                                                            | (Avg.)                                                                                   | nour                                                                 | 20                                                                                       | 8 hour                                                           | (AV9.)                                                                                 |
| Wed 14 <sup>th</sup> Sep                                |                                                                     |                                                                                           |                                                                    |                                                                                          | 30                                                                   | 29                                                                                       | 55                                                               | 29                                                                                     |
| Wed 14 <sup>th</sup> –<br>Thurs 15 <sup>th</sup> Sep    | 40                                                                  | 35                                                                                        | 41                                                                 | 35                                                                                       | 37                                                                   | 34                                                                                       | 36                                                               | 32                                                                                     |
| Thurs 15 <sup>th</sup> –<br>Fri 16 <sup>th</sup> Sep    | 41                                                                  | 37                                                                                        | 41                                                                 | 37                                                                                       | 39                                                                   | 36                                                                                       | 39                                                               | 34                                                                                     |
| Fri 16 <sup>th</sup> – Sat<br>17 <sup>th</sup> Sep      | 43                                                                  | 38                                                                                        | 44                                                                 | 39                                                                                       | 40                                                                   | 37                                                                                       | 39                                                               | 33                                                                                     |
| Sat 17 <sup>th</sup> – Sun<br>18 <sup>th</sup> Sep      | 41                                                                  | 35                                                                                        | 42                                                                 | 36                                                                                       | 38                                                                   | 34                                                                                       | 35                                                               | 30                                                                                     |
| Sun 18 <sup>th</sup> –<br>Mon 19 <sup>th</sup> Sep      | 41                                                                  | 35                                                                                        | 42                                                                 | 36                                                                                       | 36                                                                   | 33                                                                                       | 36                                                               | 30                                                                                     |
| Mon 19 <sup>th</sup> –<br>Tues 20 <sup>th</sup> Sep     | 39                                                                  | 31                                                                                        | 40                                                                 | 32                                                                                       | 35                                                                   | 28                                                                                       | 37                                                               | 28                                                                                     |
| Tues 20 <sup>th</sup> –<br>Wed 21 <sup>st</sup> Sep     | 41                                                                  | 34                                                                                        | 41                                                                 | 33                                                                                       | 39                                                                   | 35                                                                                       | 37                                                               | 32                                                                                     |
| Wed 21 <sup>st</sup> –<br>Thurs 22 <sup>nd</sup><br>Sep | 41                                                                  | 34                                                                                        | 41                                                                 | 35                                                                                       | 38                                                                   | 32                                                                                       | 37                                                               | 31                                                                                     |
| Thurs 22 <sup>nd</sup> –<br>Fri 23 <sup>rd</sup> Sep    | 41                                                                  | 36                                                                                        | 42                                                                 | 37                                                                                       | 37                                                                   | 31                                                                                       | 36                                                               | 30                                                                                     |
| Fri 23 <sup>rd</sup> – Sat<br>24 <sup>th</sup> Sep      | 42                                                                  | 36                                                                                        | 43                                                                 | 36                                                                                       | 38                                                                   | 36                                                                                       | 36                                                               | 32                                                                                     |
| Sat 24 <sup>th</sup> – Sun<br>25 <sup>th</sup> Sep      | 40                                                                  | 34                                                                                        | 41                                                                 | 35                                                                                       | 34                                                                   | 31                                                                                       | 37                                                               | 29                                                                                     |
| Sun 25 <sup>th</sup> –<br>Mon 26 <sup>th</sup> Sep      | 42                                                                  | 35                                                                                        | 43                                                                 | 35                                                                                       | 39                                                                   | 36                                                                                       | 40                                                               | 36                                                                                     |
| Mon 26 <sup>th</sup> –<br>Tues 27 <sup>th</sup> Sep     | 44                                                                  | 39                                                                                        | 45                                                                 | 41                                                                                       | 39                                                                   | 36                                                                                       | 38                                                               | 34                                                                                     |
| Total                                                   | 41                                                                  | 35                                                                                        | 42                                                                 | 36                                                                                       | 38                                                                   | 34                                                                                       | 37                                                               | 31                                                                                     |

### Table 1 – Varley Farm Full Day, Daytime, Evening and Night $L_{Aeq}$ and $L_{A90}$

- 3.16 The noise levels measured over the 14 days and 14 nights indicate that L<sub>Aeq</sub> noise levels for the full day period range between 39 and 44 dB L<sub>Aeq, 16hr</sub>. The L<sub>A90</sub> levels range between 31 and 39 dB L<sub>A90</sub>.
- 3.17 The daytime L<sub>Aeq</sub> noise levels range between 40 and 45 L<sub>Aeq, 12hr</sub>. The L<sub>A90</sub> levels range between 32 and 41 dB L<sub>A90</sub>.
- The evening L<sub>Aeq</sub> noise levels range between 34 and 40 dB L<sub>Aeq, 4 hr</sub>. The L<sub>A90</sub> levels range between 28 and 37 dB L<sub>A90</sub>.
- 3.19 The night-time L<sub>Aeq</sub> noise levels range between 35 and 40 dB L<sub>Aeq, 8hr</sub>. The L<sub>A90</sub> levels range between 28 and 36 dB L<sub>A90</sub>.
- 3.20 Figure 8 to Figure 11 shows the frequency of occurrence of each LA90 decibel level over the

duration of the survey for the full day, daytime, evening and night periods.



### Figure 8 - Varley Farm Full Day Frequency



### Figure 9 - Varley Farm Daytime Frequency



Figure 10 - Varley Farm Evening Frequency



Figure 11 - Varley Farm Night Frequency

- 3.21 The most frequently occurring background sound level for the full day period is 35 dB L<sub>A90</sub>. This corresponds to the average L<sub>A90</sub> for the full day period across the survey meaning 35 dB L<sub>A90</sub> is a good representative background sound level for Varley Farm during the full day period.
- 3.22 The most frequently occurring day-time background sound level is 35 dB L<sub>A90</sub>. However, the average L<sub>A90</sub> is 36 dB L<sub>A90</sub> and it can be seen from Figure 9 that the majority of occurrences are above 35 dB L<sub>A90</sub>. Therefore, 36 dB L<sub>A90</sub> is a better representative background sound level for Varley Farm during the daytime.
- 3.23 The most frequently occurring evening background sound level is 37 dB L<sub>A90</sub>. However, the average L<sub>A90</sub> is 34 dB L<sub>A90</sub> and it can be seen from Figure 10 that the majority of occurrences are below 37 dB L<sub>A90</sub>. Therefore, 34 dB L<sub>A90</sub> is a better representative background sound level for Varley Farm in the evening.
- 3.24 The most frequently occurring night-time background sound level is 32 dB L<sub>A90</sub>. This is slightly higher than the average L<sub>A90</sub> of 31 dB L<sub>A90</sub>, but from looking at the distribution in Figure 11 32 dB L<sub>A90</sub> is a better representative background sound level for Varley Farm during the night.

# Heathend Farm

3.25 The results of the measurements, in terms of the L<sub>Aeq</sub> and L<sub>A90</sub> for each 15-minute interval, have been plotted in time history charts covering the entire 14-day survey period and are shown in Figure 12 and Figure 13. As for Varley Farm, periods of rainfall have been excluded and no (15-minute averaged) wind speeds exceeding 5 m/s were noted during the survey.



Figure 12 - Heathend Farm Time History Week 1



Figure 13 - Heathend Farm Time History Week 2

3.26 Table 2 shows the full day, daytime, evening and night-time LAeq and LA90 for all the days over the survey period.

| Period (24hrs<br>from 0700 to<br>0700)                  | Full Day<br>(0700-<br>2300)<br>Average<br>noise<br>level<br>dB LAeq<br>16 hour | Full Day<br>(0700-<br>2300)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) | Daytime<br>(0700-<br>1900)<br>Average<br>noise<br>level<br>dB LAeq<br>12 hour | Daytime<br>(0700-<br>1900)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) | Evening<br>(1900-<br>2300)<br>Average<br>noise<br>level<br>dB LAeq 4<br>hour | Evening<br>(1900-<br>2300)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) | Night<br>(2300-<br>0700)<br>Average<br>noise<br>level<br>dB LAeq<br>8 hour | Night<br>(2300-<br>0700)<br>Average<br>noise<br>level<br>dB L <sub>A90</sub><br>(Avg.) |
|---------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Tue 13 <sup>th</sup> –<br>Wed 14 <sup>th</sup> Sep      |                                                                                |                                                                                           |                                                                               |                                                                                          | 35                                                                           | 29                                                                                       | 34                                                                         | 27                                                                                     |
| Wed 14 <sup>th</sup> –<br>Thurs 15 <sup>th</sup> Sep    | 40                                                                             | 35                                                                                        | 40                                                                            | 36                                                                                       | 36                                                                           | 33                                                                                       | 36                                                                         | 30                                                                                     |
| Thurs 15 <sup>th</sup> –<br>Fri 16 <sup>th</sup> Sep    | 43                                                                             | 38                                                                                        | 44                                                                            | 39                                                                                       | 38                                                                           | 35                                                                                       | 38                                                                         | 33                                                                                     |
| Fri 16 <sup>th</sup> – Sat<br>17 <sup>th</sup> Sep      | 44                                                                             | 39                                                                                        | 45                                                                            | 40                                                                                       | 38                                                                           | 35                                                                                       | 38                                                                         | 31                                                                                     |
| Sat 17 <sup>th</sup> – Sun<br>18 <sup>th</sup> Sep      | 42                                                                             | 36                                                                                        | 42                                                                            | 37                                                                                       | 38                                                                           | 33                                                                                       | 35                                                                         | 28                                                                                     |
| Sun 18 <sup>th</sup> –<br>Mon 19 <sup>th</sup> Sep      | 41                                                                             | 35                                                                                        | 41                                                                            | 37                                                                                       | 39                                                                           | 31                                                                                       | 35                                                                         | 27                                                                                     |
| Mon 19 <sup>th</sup> –<br>Tues 20 <sup>th</sup> Sep     | 39                                                                             | 31                                                                                        | 40                                                                            | 33                                                                                       | 34                                                                           | 26                                                                                       | 37                                                                         | 25                                                                                     |
| Tues 20 <sup>th</sup> –<br>Wed 21 <sup>st</sup> Sep     | 43                                                                             | 35                                                                                        | 43                                                                            | 34                                                                                       | 40                                                                           | 35                                                                                       | 39                                                                         | 31                                                                                     |
| Wed 21 <sup>st</sup> –<br>Thurs 22 <sup>nd</sup><br>Sep | 42                                                                             | 35                                                                                        | 43                                                                            | 36                                                                                       | 41                                                                           | 34                                                                                       | 40                                                                         | 32                                                                                     |
| Thurs 22 <sup>nd</sup> –<br>Fri 23 <sup>rd</sup> Sep    | 44                                                                             | 37                                                                                        | 45                                                                            | 39                                                                                       | 38                                                                           | 32                                                                                       | 35                                                                         | 29                                                                                     |
| Fri 23 <sup>rd</sup> – Sat<br>24 <sup>th</sup> Sep      | 41                                                                             | 36                                                                                        | 42                                                                            | 37                                                                                       | 38                                                                           | 35                                                                                       | 35                                                                         | 30                                                                                     |
| Sat 24 <sup>th</sup> – Sun<br>25 <sup>th</sup> Sep      | 40                                                                             | 34                                                                                        | 41                                                                            | 36                                                                                       | 34                                                                           | 30                                                                                       | 32                                                                         | 26                                                                                     |
| Sun 25 <sup>th</sup> –<br>Mon 26 <sup>th</sup> Sep      | 41                                                                             | 36                                                                                        | 41                                                                            | 35                                                                                       | 40                                                                           | 36                                                                                       | 42                                                                         | 36                                                                                     |
| Mon 26 <sup>th</sup> –<br>Tues 27 <sup>th</sup> Sep     | 45                                                                             | 40                                                                                        | 46                                                                            | 42                                                                                       | 39                                                                           | 36                                                                                       | 39                                                                         | 34                                                                                     |
| Total                                                   | 42                                                                             | 36                                                                                        | 43                                                                            | 37                                                                                       | 38                                                                           | 33                                                                                       | 38                                                                         | 30                                                                                     |

| Table 2 | - Heathend Farm | Full Day, | Daytime, | <b>Evening and</b> | Night LAeg and LA90 |
|---------|-----------------|-----------|----------|--------------------|---------------------|
|---------|-----------------|-----------|----------|--------------------|---------------------|

- 3.27 The noise levels measured over the 14 days and 14 nights indicate that  $L_{Aeq}$  noise levels for the full day period range between 39 and 45 dB  $L_{Aeq, 16hr}$ . The  $L_{A90}$  levels range between 31 and 40 dB  $L_{A90}$ .
- 3.28 The daytime  $L_{Aeq}$  noise levels range between 40 and 46 dB  $L_{Aeq, 12hr.}$  The  $L_{A90}$  levels range between 33 and 42 dB  $L_{A90}$ .

- 3.29 The evening L<sub>Aeq</sub> noise levels range between 34 and 41 dB L<sub>Aeq, 4 hr</sub>. The L<sub>A90</sub> levels range between 26 and 36 dB L<sub>A90</sub>.
- 3.30 The night-time L<sub>Aeq</sub> noise levels range between 34 and 42 dB L<sub>Aeq, 4 hr</sub>. The L<sub>A90</sub> levels range between 27 and 36 dB L<sub>A90</sub>.
- 3.31 Figures to show the frequency of occurrence of each L<sub>A90</sub> decibel level over the duration of the survey for the full day, daytime, evening and night periods.



Figure 14 - Heathend Farm Full Day Frequency



Figure 15 - Heathend Farm Daytime Frequency



Figure 16 - Heathend Farm Evening Frequency



### Figure 17 - Heathend Farm Night Frequency

- 3.32 The most frequently occurring background sound level during the full day period is 37 dB L<sub>A90</sub>. This is slightly higher than the average L<sub>A90</sub> of 36 dB L<sub>A90</sub>, but from looking at the distribution in Figure 14 37 dB L<sub>A90</sub> is a better representative background sound level for Heathend Farm during the full day period.
- 3.33 The most frequently occurring day-time background sound level was 37 dB L<sub>A90</sub>. This corresponds to the average L<sub>A90</sub> of 37 dB L<sub>A90</sub>. Therefore, 37 dB L<sub>A90</sub> is a good representative background sound level for Heathend Farm in the daytime.
- 3.34 The most frequently occurring evening background sound level was 33 dB L<sub>A90</sub>. This corresponds to the average L<sub>A90</sub> of 33 dB L<sub>A90</sub>. Therefore, 33 dB L<sub>A90</sub> is a good representative background sound level for Heathend Farm in the evening.
- 3.35 The most frequently occurring night-time background sound level is 27 dB L<sub>A90</sub>. However, the average L<sub>A90</sub> is 30 dB L<sub>A90</sub> which corresponds to the second most frequently occurring background sound level in Figure 17. Furthermore, the majority of occurrences are above 27 dB L<sub>A90</sub>, therefore, 30 dB L<sub>A90</sub> is a better representative background sound level for Heathend Farm during the night.

# 4. CONCLUSION

- 4.1 A noise survey has been conducted at two residential locations around the proposed site in order to quantify representative background sound levels in accordance with BS4142.
- 4.2 The representative background sound levels in dB L<sub>A90</sub> for the two properties during the full day period (0700-2300), daytime (0700-1900), evening (1900-2300) and night (2300-0700) are presented in Table 3.

### Table 3 - Representative Background Sound Levels in dB LA90

| Property      | Full day period<br>(0700-2300) | Daytime (0700-<br>1900) | Evening (1900-<br>2300) | Night (2300-<br>0700) |
|---------------|--------------------------------|-------------------------|-------------------------|-----------------------|
| Varley Farm   | 35                             | 36                      | 34                      | 32                    |
| Heathend Farm | 37                             | 37                      | 33                      | 30                    |



### **APPENDIX C - FIGURES**



Figure 1 - Predicted Specific Sound Footprint - Day The LAeq descriptor has been used

Reproduced from Ordnance Survey Digital Map Data © Crown Copyright 2022. All rights reserved. Licence number 0100031673.





Reproduced from Ordnance Survey Digital Map Data © Crown Copyright 2022. All rights reserved. Licence number 0100031673.



### APPENDIX D - SUGGESTED PLANNING CONDITION WORDING

The facility shall be designed and operated to ensure that the rating sound level, determined using the BS4142: 2014 methodology, shall not exceed the background sound level plus 5 dB(A) during daytime, evening and night-time periods at the nearest residential properties (as identified in RES report 04886-4726443-01). The background sound levels shall be as detailed in RES Report 04886-4726443-01, or those obtained in an updated survey, whichever are greater.